Capsule-like smart aggregate sensor for wireless impedance monitoring of PSC anchorage

Quang-Quang Pham¹⁾, Quoc-Bao Ta²⁾, *Ngoc-Lan Pham³⁾ and Jeong-Tae Kim⁴⁾

1), 2), 3), 4) Department of Ocean Engineering, PKNU, Busan 608-737, Korea
4) idis@pknu.ac.kr

ABSTRACT

This study presents an innovative method for monitoring prestress forces in a prestressed concrete (PSC) anchorage using a capsule-like smart aggregate (CSA)-based wireless impedance technique. The CSA sensor is developed with a predetermined frequency of less than 100 kHz. A wireless impedance sensor node, SSeL-Pi, is designed by combining a Raspberry Pi platform and an impedance board. The SSeL-Pi node is integrated with the CSA sensor to make a new wireless impedance measurement system. An impedance test is performed on the CSA-embedded post-tensioning anchorage zone under prestress (PS) forces. The variations in the obtained impedance signatures are then quantified to assess the feasibility of the proposed system (CSAs and SSeL-Pi) for PS force monitoring in the anchorage. The results demonstrate that the proposed method shows the potential for accurately identifying PS forces in PSC structures.

REFERENCES

Huynh, T.C. and Kim, J.T. (2017), "Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique", *Smart Struct. Syst.*, **20**(2), 181-195.

Pham, Q. Q., Dang, N. L., Ta, Q. B. and Kim, J. T. (2021), "Optimal Localization of Smart Aggregate Sensor for Concrete Damage Monitoring in PSC Anchorage Zone", *Sensors*, **21**(19), 6337.

¹⁾ PhD

²⁾ Graduate Student

³⁾ Graduate Student

⁴⁾ Professor